注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

中华志愿者

实地考察 在线咨询 远程策划 精准实施

 
 
 

日志

 
 

轻松搞定公务员考试行测数量关系之概率问题  

2012-10-21 17:05:18|  分类: 民主与法制 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

在公务员考试行测数量关系的考核中,“排列组合”历来是广大考生最为头疼的“拦路虎”,“排列组合”既是难点,又是重点,所以是考生必须引起重视的核心模块,能否突破排列组合这道关卡,将是考生最后取得高分的关键。而值得考生注意的是,最近联考的趋势,排列组合的考察逐渐出现创新点,就是基于传统排列组合问题之上的概率问题。概率问题在近三年考试中出现频率很高。联考历来以国考为风向标,而概率问题也将成为排列组合中考核的要点,所以必须引起考生的重视。为帮助广大学生掌握此类题型的解题技巧,华图公务员考试研究中心特别介绍一下概率问题的知识点,并以一道联考真题为例讲解一些概率问题解题思路。

在这里首先介绍一下概率问题的基本知识点,对于大多数基础比较差的考生而言,概率问题首先需要记住这样一个公式:

概率=满足条件的情况数÷总情况数

这个公式中,满足条件的情况数和总情况数的算法源于排列组合的相关知识,考生根据题意判断即可,而对于分情况概率和分步骤概率的解法,也是脱胎于排列组合问题,分类用加法,分步用乘法,因此有了这两个公式:

总体概率=满足条件的各种情况概率之和;

分步概率=满足条件的每个步骤概率之积。

以上是概率问题的一些基本概念,下面通过一道典型例题来讲解下概率问题的解题思路,这道题是是2011年424联考的第44题,一道典型的概率问题,题目是这样出的:

【2011-424-44】小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是(    )

A.0.899         B.0.988               C.0.989               D.0.998

这道题问4个路口至少有一处遇到绿灯的概率,有两种解法:一种是分情况讨论,分别算出一处绿灯,二处绿灯,三处绿灯,四处绿灯的概率,然后相加即可;另一种方法是逆向思维法,上文中反复提到,概率问题是排列组合的延伸,排列组合是概率问题的基础,而在解决排列组合问题的过程中,我们常用到这样一个公式:

满足条件的情况数=总情况数—不满足条件的情况数

而在概率问题中,这个公式也能适用,具体公式为:

某条件成立概率=总概率—该条件不成立的概率

值得注意的是,这里的总概率指的就是全概率,就是1,落实到这道题中,“至少有一次遇到绿灯的概率”的反面情况就是“一次绿灯都遇不到的概率”,即“全遇到红灯的概率”,而“全遇到红灯的概率”是指先后四个路口均遇到红灯,是分步概率,等于0.1×0.2×0.25×0.4,而答案就是1—0.1×0.2×0.25×0.4,等于0.998,选D。总结下这道题,解决这道题我们运用了分步概率计算和逆向思维的思想,考生务必掌握。

值得注意的是,近年来概率问题的考察点愈广愈难,涉及到几何概率,期望概率等,以后出现高等数学中的概率知识也未可知。华图公务员考试研究中心特别提醒广大考生:要解决好这类问题,考生一方面要打下坚实的基础,学好排列组合以及本文所提到的基本概率知识,做到“以不变应万变”;另一方面,考生要加强概率方面的知识储备,达到“兵来将挡,水来土掩”的境界。

  评论这张
 
阅读(41)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017